

SOMALIA GU 2026 CLIMATE OUTLOOK

Issued on 6 February 2026

Key Highlights

- The humanitarian situation in Somalia is rapidly deteriorating following the failure of the 2025 Deyr rains, harsh Jilaal season, and onset of drought. Approximately 4.4 million people are currently facing Crisis or worse levels of acute food insecurity as per the 2025 Post Gu Integrated Food Security Phase Classification (IPC) analysis. New IPC Post Gu analysis results are expected by end of February 2026.
- Drought conditions have intensified across the country leading to widespread water scarcity, crop failure, livestock losses, and displacements. In many areas, community coping mechanisms are getting exhausted. Rural agricultural and pastoral communities are among the most affected, facing severe livestock losses, crop failure and water shortages.
- Somalia enters the Gu 2026 season under significant climatic stress, following a failed Deyr 2025, failed Karan in the northeastern regions, prolonged hot and dry Jilaal conditions, and an emerging but localized drought, which while less widespread is more severe in intensity than the 2022 drought in affected areas.
- The forecast slightly favors near-normal rainfall (40 %), though drier or wetter conditions (30 % each) remain possible. Parts of Somaliland and the Ethiopia-Somalia border areas have a 45% chance of above-normal rainfall, but large areas of south and central Somalia remain highly uncertain. Hot conditions are very likely to persist into March and April, increasing evapotranspiration and delaying drought recovery even where rainfall is near normal. This is evidenced by acute water shortages, livestock deaths, rising food prices, and declining river levels, particularly in Hirshabelle, Galmudug, Jubaland, South West, and Banadir regions.
- River levels along the Shabelle and Juba rivers are currently very low, with community reports confirming drying river sections in Beledweyne, Bulo Burte, Balad, and Jowhar, increasing dependence on groundwater abstraction and water trucking ahead of the Gu season.
- While above-normal Gu rainfall could ease drought conditions, especially in northern regions, meaningful recovery across most of central and southern Somalia is likely to be slow, with high risks of delayed onset, long dry spells, and uneven rainfall distribution. Gu season will be a stabilization window but not a guaranteed season, even a near-normal Gu is unlikely to deliver immediate and proportional recovery, especially for pastoral, agro-pastoral, and riverine livelihoods.

Seasonal Context and Why Gu 2026 Matters for Somalia

The Gu season is Somalia's most important rainfall season, underpinning agriculture, livestock production, pasture and water availability, and food security, including:

- Crop establishment and yield formation in rain-fed, riverine and agro-pastoral zones
- Pasture and browse regeneration supporting livestock body condition, milk production, and market value
- Surface water availability (barkads/berkads, shallow wells, ponds) and groundwater recharge
- River flow regimes (Shabelle and Juba), with implications for irrigation, riverine livelihoods, and flood risk

These factors mean Gu 2026 begins under significantly worse-than-normal conditions, as confirmed by climate indicators and community feedback.

The Somalia Drought Evolution analysis indicates that December 2025 marked an emerging drought that is less widespread than 2022 but more severe in intensity, signaling localized yet sharp stress requiring close monitoring and early action.

This is corroborated by Radio Ergo feedback, where callers across central and southern Somalia reported severe water shortages, livestock deaths, food scarcity, and distress migration, while only isolated areas in Hiran and Middle Juba received light rainfall in mid-January.

The SWALIM Newsletter (7 January 2026) further confirms declining groundwater levels, increasing pressure on strategic boreholes, and minimal river-fed recharge due to sustained

Drought Evolution

Analysis of the latest Combined Drought Index (CDI) indicates that drought conditions remained widespread and largely persistent across Somalia between December 2025 and January 2026 (Figure 1), with only limited and localized improvements observed in some northern and central areas. Overall, the spatial pattern reflects strong drought carryover from the preceding seasons, particularly in southern Somalia.

In southern Somalia, including Bay, Bakool, Lower and Middle Juba, Lower and Middle Shabelle, and parts of Gedo, severe to extreme drought conditions dominated in December 2025 and persisted into January 2026 with minimal spatial contraction. These areas continued to record CDI values below 0.6, reflecting cumulative rainfall deficits, poor vegetation conditions, and depleted soil moisture.

Any rainfall received during the late Deyr period was insufficient to reverse entrenched drought stress, indicating high drought inertia and sustained pressure on rain-fed agriculture, rangelands, and surface water availability.

In central Somalia, notably Hiraan, Galgaduud, and Mudug, the CDI shows a mixed but fragile signal. Between December and January, localized transitions from severe to moderate or mild drought were observed, particularly in parts of Galgaduud and Mudug, suggesting partial vegetation response to sporadic rainfall. However, large areas remained under moderate to severe drought, highlighting uneven rainfall distribution and limited hydrological recovery.

In contrast, northern Somalia (Awdal, Woqooyi Galbeed, Togdheer, Sanaag, Bari, and parts of Sool) generally exhibited mild drought to near-normal conditions in both months.

From December 2025 to January 2026, near-normal CDI values became more spatially coherent, especially in Awdal, Woqooyi Galbeed, Sanaag, and Bari, indicating comparatively better rainfall performance and vegetation conditions.

Nonetheless, localized moderate drought pockets persisted, particularly in Sool and eastern Sanaag, reflecting continued spatial variability.

The December–January CDI evolution underscores a pronounced north–south contrast and confirms that no meaningful drought break occurred at the national scale.

As Somalia progresses deeper into the Jilaal dry season, the persistence of severe drought in southern and parts of

Gu 2026 Rainfall Outlook

Against this stressed baseline, the Gu 2026 seasonal rainfall forecast provides cautious but uncertain signals. Based on climatology, Gu season projections are a bit difficult to forecast and the rainfall performance come with some high level of uncertainty.

Most Likely Gu 2026 Seasonal Rains

For much of Somalia, the Climate Prediction and Applications Centre (ICPAC) of the Intergovernmental Authority on development (IGAD) indicates a slightly enhanced probability of near-normal seasonal rainfall (40 % likelihood), while below-normal and above-normal outcomes (30 % likelihood each) remain plausible (Figure 2). There is a 45 % likelihood of above-normal Gu rainfall over most of Somaliland and along the Ethiopia–Somalia border.

However, the high level of Gu forecast uncertainty requires contingency planning for both drier and wetter outcomes, even where near-normal rainfall is most likely.

Spatial and Temporal Distribution of Gu 2026 Rains

March: Hot and dry harsh Jilaal conditions are expected to extend into March, with limited rainfall confined to parts of Gedo, coastal Galmudug, and northern highlands. This period is unlikely to provide meaningful drought relief beyond localized areas.

April: Rainfall performance is forecasted to improve over

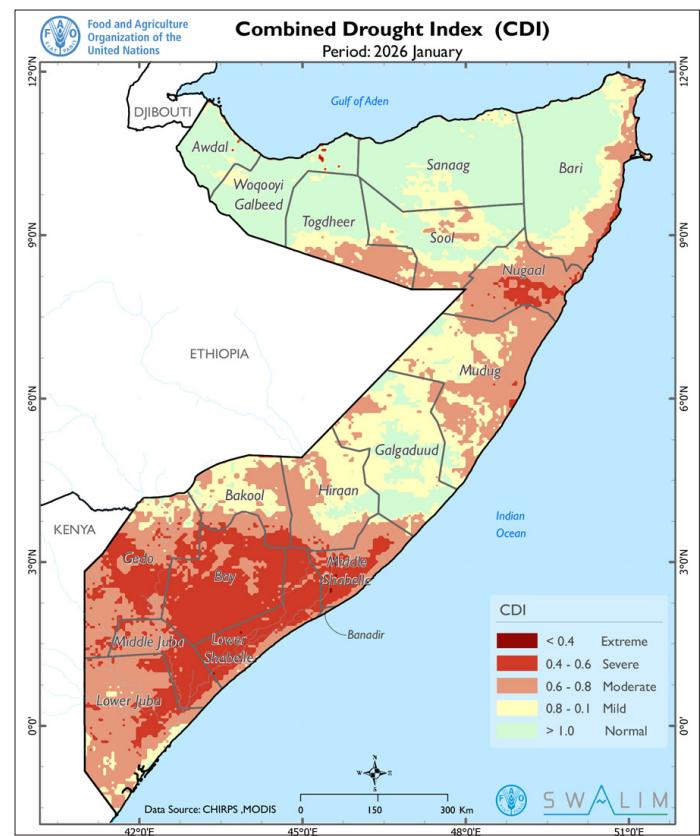


Figure 1: Drought conditions over Somalia as of 31 January 2026 showing intensification over most regions in the south, persistence in the central parts of the country

central regions signals elevated risk of prolonged agricultural and hydrological stress, reinforcing the need for early preparedness, water resource management, and close monitoring ahead of the Gu 2026 season.

Somaliland and parts of central regions, but south-central Somalia (Lower and Middle Shabelle, Bay, Bakool, Hiraan, Galgaduud) remains highly uncertain, raising the risk of delayed agricultural recovery.

May: Wetter-than-normal conditions are more likely over Somaliland, Puntland, and parts of Jubaland, while Gedo and Bay face a higher risk of drier-than-normal conditions,

Implications of the Most Likely Gu 2026 Rains

Drought Recovery: Hot and dry harsh Jilaal conditions are expected to spill into March, intensifying drought severity early in the season. While above-normal Gu rains could mitigate drought impacts, recovery in March–April is likely to be confined mainly to Somaliland. A near-normal Gu season does not guarantee favorable outcomes, as long dry spells interspersed with heavy rainfall may still occur.

Flood Risks: Above-normal rainfall over upstream Ethiopian catchments could generate significant runoff into the Shabelle and Juba rivers. Given the currently low river stages and weakened riverbanks, localized riverine flooding may occur as early as late April or early May, even before full seasonal recovery. Isolated heavy rainfall events may also trigger flash floods and erosion, while prolonged dry spells reduce recharge and crop performance.

Forecast of Gu 2026 Onset

Rains are most likely to begin over Gedo in the third week of April, progressing eastwards to Lower and Middle Juba, Bay, Bakool, Lower and Middle Shabelle, Hiraan, Galgaduud, Awdal, Woqooyi Galbeed, and Sool by the fourth week of April (Figure 3). Mudug, Nugaal, and Sanaag are likely to follow in the first week of May, and Bari in the second week of May.

Although isolated rainfall may occur as early as late March, operational onset is expected later in April.

There are chances of delayed onset in parts of Jubaland, Nugaal, and Woqooyi Galbeed, while earlier onset is possible in central regions. Onset timing remains highly uncertain over Bari, Sool, and Sanaag.

Early planting based on isolated March rainfall carries high risk. It is therefore advisable to:

- Jubaland, Nugaal, Woqooyi Galbeed: plan for delayed onset and slow drought recovery; prioritize staggered planting, seed timing advisories, and water contingency.
- Central regions: prepare for earlier onset potential, which may support rangeland recovery but also increase localized runoff and flash flood risk where soils are bare.

Gu Temperature Outlook

The Climate Prediction and Applications Centre (ICPAC) of the Intergovernmental Authority on development (IGAD) forecasts indicate a high probability of above-normal temperatures, exceeding 60% over parts of central Somalia (Figure 4), with the following implications:

- Increased evapotranspiration, raising crop water demand
- Effective drying even under near-normal rainfall conditions
- Heightened livestock heat stress and increased public health risks

Key Climate Drivers Shaping Gu 2026

El Niño-Southern Oscillation (ENSO) is a natural, periodic fluctuation in equatorial Pacific Ocean temperatures and atmospheric pressure, cycling between El Niño, La Niña, and neutral phases every 2–7 years. It modifies atmospheric circulation thereby significantly driving climate within the Greater Horn of Africa including Somalia, causing floods (El Niño) and droughts (La Niña). Currently, there are La Niña conditions, with a ~75 % probability of transition to ENSO-neutral during Jilaal season (January–February)–March, likely persisting through Gu (March–April–May) season.

Indian Ocean Dipole (IOD) is a climate phenomenon defined by the difference in sea surface temperatures (SSTs) between the western and eastern tropical Indian Ocean. Its positive and negative phases cause enhanced and suppressed rainfall performance, respectively, in Eastern Africa including Somalia. The IOD is currently neutral and expected to remain during the Gu (March–April–May) 2026 season.

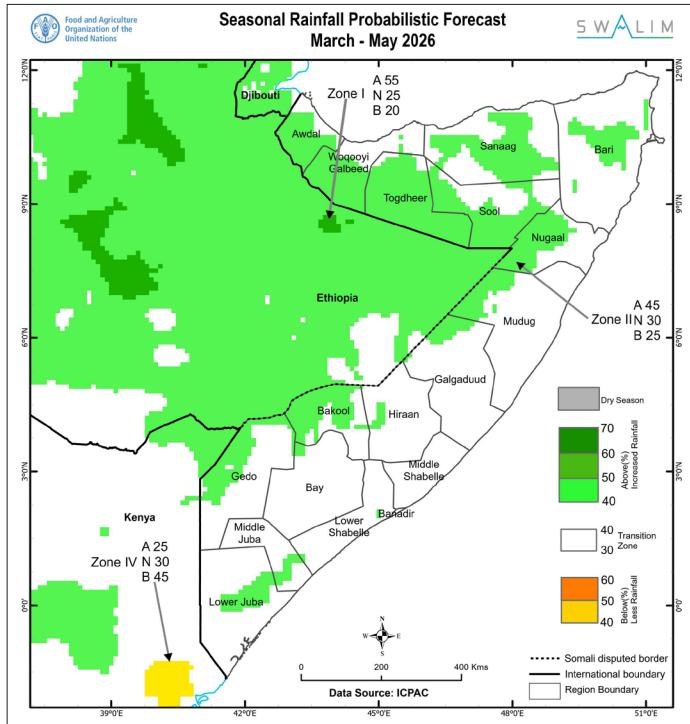


Figure 2: Seasonal rainfall probabilistic forecast March - May 2026

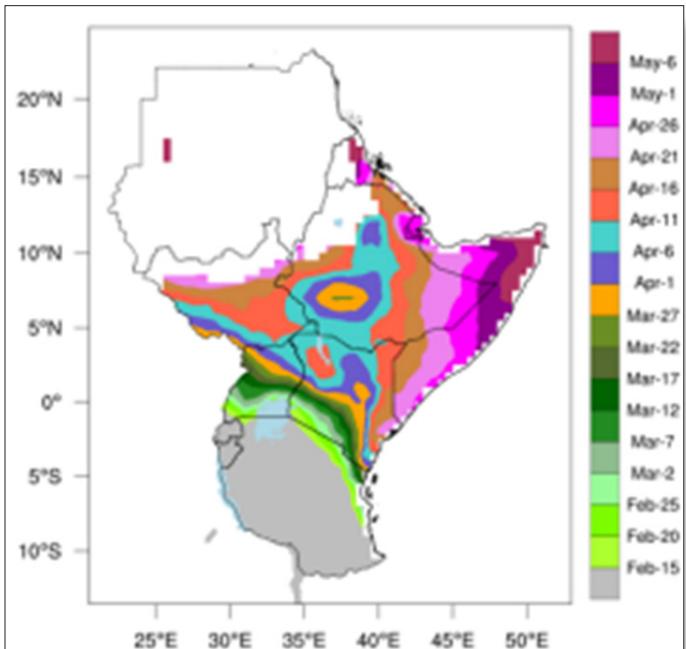


Figure 3: Map showing the most likely rainfall onset dates for the Gu 2026 season from model ensemble means. For Somalia, rainfall onset is expected over Gedo in the third week of April progressing eastwards (Source: ICPAC)

Evidence reports a weak statistical connection between Gu (March–April–May) rainfall performance and ENSO and IOD, explaining the near-climatological probability distribution in the Gu 2026 projection. Furthermore, given that these two large-scale drivers are neutral, sub-seasonal and regional dynamics will play a stronger role, reinforcing the need for regular in-season updates. One such sub-seasonal driver that will be monitored on weekly basis is the Madden-Julian Oscillation (MJO). It is an eastward moving disturbance of cloudiness and rainfall that traverses the globe around the equatorial regions and returns to its initial starting point in between 30 to 60 days.

Risk Interpretation: What Should Somalia Plan For?

The Gu 2026 outlook must be interpreted against three reinforcing stressors:

- **Climatic:** weak rainfall signal and high temperatures
- **Hydrological:** depleted rivers, declining groundwater, high abstraction
- **Socio-economic:** rising food prices, livestock mortality, displacement, and protection concerns

Going by the above stressors, the Gu season is likely to be a stabilization window but not a guaranteed season, even a near-normal Gu is unlikely to deliver immediate and proportional recovery, especially for pastoral, agro-pastoral, and riverine livelihoods that have exhausted their coping mechanisms and already weakened by cumulative shocks. Therefore, the drought impact is expected to be felt throughout the first half of 2026

Sectoral Advisories

Agriculture

- High risk of false starts and replanting losses due to late operational onset
- Significant uncertainty in April–May rainfall in the south and central regions
- Rapid soil moisture loss under high temperatures
- Dual risk for riverine agriculture: early low flows and later flood surges

Advisory: promote staggered planting, climate smart, drought tolerant and early maturing/short-cycle varieties, soil moisture conservation, and strengthened pest surveillance, rehabilitate critical water infrastructure through cash for work, enhance drought monitoring and provision of timely early warning information.

Gu Planning should therefore be scenario-based:

- **Scenario A – Near-normal (most likely):** Partial recovery if rains are well distributed; localized flood risk remains; water deficits persist under high temperatures.
- **Scenario B – Below-normal (plausible):** Poor crop establishment, pasture deficits, intensified livestock stress, higher groundwater pressure, worsening food insecurity.
- **Scenario C – Above-normal (plausible):** Increased river flood risk; benefits offset by erosion, infrastructure damage, and disease risks.

Livestock and Rangelands

- Depleted pastures and Rangelands
- Rapidly deteriorating livestock conditions
- Widespread reports of livestock disease, mortality and distress

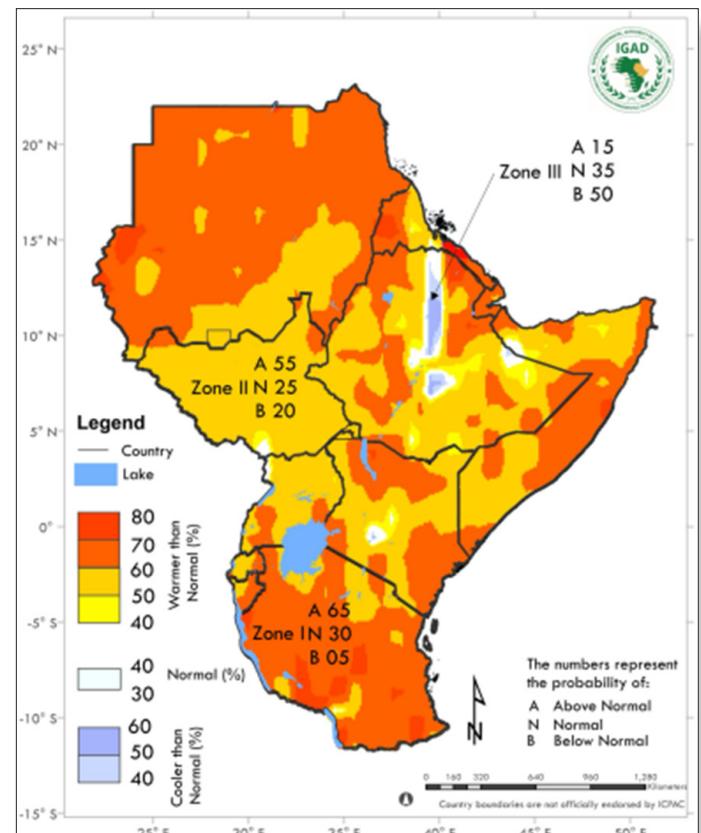


Figure 4: Probability forecast of mean surface temperatures for the Gu 2026 season exceeding 60% over parts of central Somalia (Source: ICAPAC)

- Dried water points
- Reduced livestock productivity (including milk) impacting household nutrition and income
- Elevated heat stress during Gu
- Severity is localized but intense

Advisory: Provide emergency livelihood support through cash+, including livestock inputs, animal health treatments and disease and pest surveillance, pre-position/supply water, fodder, veterinary support in hotspot areas, animal destocking, reduce trekking distances, rehabilitate critical water infrastructure through cash for work, enhance drought monitoring and provision of timely early warning information.

Water (WASH, Surface and Groundwater)

- Severe water stress and high reliance on groundwater
- Borehole functionality remains critical, especially in Puntland and Somaliland
- Continued low river levels reduce recharge
- Flood risk remains possible later in the season

Advisory: prioritize water trucking, especially for IDP sites, borehole rehabilitation/maintenance, water price monitoring, and river-gauge surveillance.

Flood Risk Management

- Maintain readiness for riverine and flash flooding
- Flood protection/ sand banks
- Strengthen river monitoring and community messaging
- Support to authorities with a list of potential evacuation sites

Conclusion, Monitoring and Update Plan

Food insecurity and acute malnutrition typically peak after droughts, not during them, and recovery is often gradual. Given current severity and distress signals, any delay or failure of Gu rains could rapidly escalate humanitarian needs, particularly among IDPs and rural households (pastoral and agropastoral communities).

Gu 2026 offers a narrow opportunity to stabilize livelihoods, but it is not a guaranteed recovery season. Proactive preparedness, anticipatory action, and rapid in-season monitoring are essential.

The Federal Government of Somalia (FGS) through its Permanent Representative to World Meteorological Organization (WMO), with support from Food and Agriculture Organization (FAO), World Meteorological Organization (WMO), and IGAD Climate Prediction and Application Centre (ICPAC), has organized the National Climate Outlook Forum (NCOF) in Mogadishu between 9 and 12 February 2026. During the NCOF the regional outlook will be downscaled to provide national and state-level advisories. This requires:

- Monthly (ideally weekly) rainfall and temperature monitoring
- Continuous tracking of onset and dry spells
- Close surveillance of river levels and downstream flood risk

Nutrition and Health

- High risk of acute malnutrition under continued drought stress
- Recovery likely slow even with rainfall
- Strong need for integrated Food Security (including cash), WASH, Health and nutrition interventions to address underlying causes of malnutrition

Takeaway for Decision-Makers

- Do not plan for a “normal” Gu—plan for variability and localized extremes
- Uncertainty itself is the dominant risk signal for Gu 2026
- Integrated use of climate forecasts, Combined Drought Index (CDI), hydrological data, and community feedback is essential for timely action
- The necessity of enhancing Anticipatory Action (AA) as a cost-effective way to mitigate the impact of predictable shocks (like drought and floods) before they escalate into full-scale disasters

SWALIM is a multi-donor project managed by FAO and currently funded by The European Union, UKaid, SDC, GCF, The World Bank, Canada and Government of Sweden

